Impact du changement climatique sur les chaussées

Christ van Gurp - JERI 2017

werkverkeer

KO-AC-31

Trust Quality Progress

Impact of climate change on road pavements

Christ van Gurp - JERI 2017

werkverkeer

KO-AC-31

Trust Quality Progress

Intergovernmental Panel of Climate Change

IPCC report predicts:

- Earth will become warmer
- Some regions will become wetter, other will become drier
- Sea levels will rise
- Snow cover and the extent of sea-ice will reduce
- Frequency and severity of extreme weather events will increase

Warning IPCC

- Climate change has a significant impact on design, construction, maintenance and operation of global road infrastructure
- Action must be taken
- Road infrastructure owners must adapt their programmes, strategies, activities, policies and standards

Climatic changes

- Temperature
- Precipitation
- Wet and dry periods
- Wind, storm and gales
- UV radiation
- Rise of sea level

Major climate hazards in road infrastructure

Gradual changes to average climatic conditions

- □ temperature
- □ seasonal precipitation levels
- Changes to the frequency, severity, and location of extreme weather events
 - □ precipitation (hours) with risk of excess water
 - □ heat wave (days) with high pavement temperatures
 - □ drought (weeks) with large changes of moisture content

Climatic changes in Europe – Temperature

Temperature deviation from norm Western Switzerland - Summer

Precipitation deviation from norm Western Switzerland - Autumn

The risks of a changing Alpine climate

- Summers are expected to keep getting warming and drier (whole year gets hotter) (temperature rise between 2.7 and 4.8°C
 - □ reduced temperature rise between 1.2 and 1.8°C in stabilisation scenario
- Winters are expected to become moister
 - □ shift from snow to a greater amount of rain
 - risks of rock falls, more melting water and more flooding
- Heavier rainfall s becoming more frequent
 - but 18 to 28% less precipitation in summer
 - and 8 to 10% less precipitation in summer in stabilisation scenario
 - uncertain projections of total and intensity of precipitation

Changes of primary parameters

Risk Management for Roads in a Changing Climate

© RIMAROCC

Local hazard points

- Geology
 - $\hfill\square$ type of soil
- Geography
 - $\hfill\square$ close to river
 - □ cutting, embankment
- Drainage
 - □ run-off, maintenance level
- Pavement condition
 - □ cracks, joints
- Traffic
 - □ cars or trucks

Local hazard points

Pavement type

- □ asphalt pavement
- □ rigid pavement
- modular pavement (blocks)
- □ bound or unbound road base
- Pavement material
 - \Box type of mineral aggregate

Consequences of higher temperatures in asphalt pavements

- Accelerated ageing of bitumen
 - □ higher risk of surface cracking and fretting, ravelling
 - especially at top of pavement and in open graded mixes
- More bleeding or flushing
- More surface rutting
 - depends on number of very hot days
 - □ traffic safety issue when water ponds in the ruts
- Effect on cracking is complex
- Potentially reduced skid resistance
 - □ more dirt on pavement surface at end of dry periods
 - more cleaner pavement and better skid resistance after periods of heavy rain

Assessment sensitivity of pavement performance to temperature

Fully flexible pavement structure

35 mm AC wearing course E = 2000 MPa

315 mm AC base layers E = 5400 MPa

225 mm Granular sub-base E = 150 MPa

Semi-infinite soft subgrade E = 50 MPa

Assessment sensitivity of pavement performance to temperature

Fully flexible pavement structure

Pavement temp rise 1°C

			i avenient temp noe i o
	35 mm AC wearing course	E = 2000 MPa	E = 1840 MPa
	315 mm AC base layers	E = 5400 MPa	E = 4970 MPa
	225 mm Granular sub-base	E = 150 MPa	E = 150 MPa
	Semi-infinite soft subgrade	E = 50 MPa	E = 50 MPa

Assessment sensitivity of pavement performance to temperature

Fully flexible pavement structure

Pavement temp rise 1°C

Pavement design life N = 36 Mio ESALs

Loss of design life by 16%?

N = 30 Mio ESALs

Better to express effect of temperature change in probability

Standard procedure: Temp. rise 1°C: Compensation needed: 85% 81.8% 3% of AC thickness

Climatic influences on design temperature

- Road infrastructure is typically designed to withstand local weather and climate
- Temperature predictions are different from historical data
- Rise of air temperature by 1°C results in rise of asphalt temperature of 2°C
- Truck intensities and weights increase annually
- Trucks predominantly travel during daylight with higher temperatures

Critical design value

Intensity of weather event \rightarrow

Critical design value

Intensity of weather event \rightarrow

Critical design value

Consequences of higher temperatures in asphalt pavements with cement bound bases

- Higher temperatures in bound base due to higher temperatures at pavement surface
- Higher temperature gradient in bound base
- Higher tensile stresses at the bottom of the bound base
- In most countries cement bound bases are pre-cracked
 - □ reduction or prevention of thermal movements
 - □ thermal movements cause reflection cracking

Adaptation: None; no effect on behaviour and performance by climate change

Consequences of changes of precipitation and wet/dry periods in asphalt pavements

- Effect of granular layers, substructure and local environment
 - □ cutting, embankment, along a river, etc.
- Effect on asphalt mix

Extreme weather events - Precipitation

- Reduced bearing capacity
- Flooding of the road
- Erosion, debris and mud deposits
- Infrastructure might wash away.
- Slope instability
- Landslides of infrastructure
- Damage to embankment

Reduce risk of water and mud flow

Extreme weather events - Drought

High plasticity soils

- □ Only 0.5% of CH countryside
- Moisture dry-out via vegetation
- Salinity problems
- Soil shrinkage
 - □ subsidence
 - □ increased roughness
 - □ cracking
- Be selective in choice of trees

Impact of moisture on asphalt mixes

- Run-off problems
 - □ especially at wide motorways

- Adaptation
 - consider porous asphalt
 - apply transverse grooving
 - no increase of cross fall

Impact of moisture on asphalt mixes

- More splash & spray in PA
- AC stripping
 - $\hfill\square$ adhesion water-stone is better
 - \Box more in open graded mixes
 - □ increased fretting and potholes
- Adaptation
 - prevent water ingress
 - use good aggregate skeleton
 - less temperature sensitivity

Conclusions

- Climate change, and especially extreme weather events, will impact on the performance and the costs of operating a road network
- Road owners/operators should quantify their risk profile
- Technical solutions are available
 - proper drainage
 - □ stable skeletons in asphalt mixes with robust components
 - □ more appropriate target values of principal design parameters
- Adaptation can be combined with normal rehabilitation
- Focus on durability to moisture effects
- Climate change has become a reality; need to start acting now

Guidance

Published Project Report PPR164 Creating the future of transport

The effects of climate change on highway pavements and how to minimise them: Technical report

T Wilway L Baldachin S Reeves M Harding M McHale M Nunn

Thank you for your patience

Questions?

