ANALYSE DU BESOIN D'ADAPTER LES NORMES EN FONCTION DU CHANGEMENT CLIMATIQUE

JERI – LE 04.11.2025

CONTENU DE LA PRÉSENTATION

- Introduction
- Quels changements climatiques ?
- Méthodologie
- Impact sur les normes
- Exemple de la norme VSS 40 350 Évacuation des eaux de chaussées
 - Intensité des pluies
- Conclusions

INTRODUCTION

Mandat de recherche mené par la VSS (NFK 5.6) en 2021 – 2022

- Bureaux participants :
 - Infralab : Dr. Patrick Rychen
 - sd ingénierie neuchâtel : Michel Tripet et Alexandra Dufour
- Partenaire et membre de la commission NFK 5.6 : Cornélia Schwierz MétéoSwiss
- Les membres de la commission NFK 5.6

But de la recherche:

➢Évaluer le besoin d'adaptation des normes VSS par rapport au changement climatique.

INTRODUCTION

Objectifs de la recherche :

- ➤ Développement d'une méthodologie
- ➤ Analyse systématique des normes VSS (hors normes EN)
- ➤ Exemples Étude approfondie :

VSS 70 140 b « Gel »

VSS 41 826 « Coûts d'exploitation »

VSS 40 350 « Évacuation des eaux »

>Rapport de recherche (disponible sur la plateforme de la VSS)

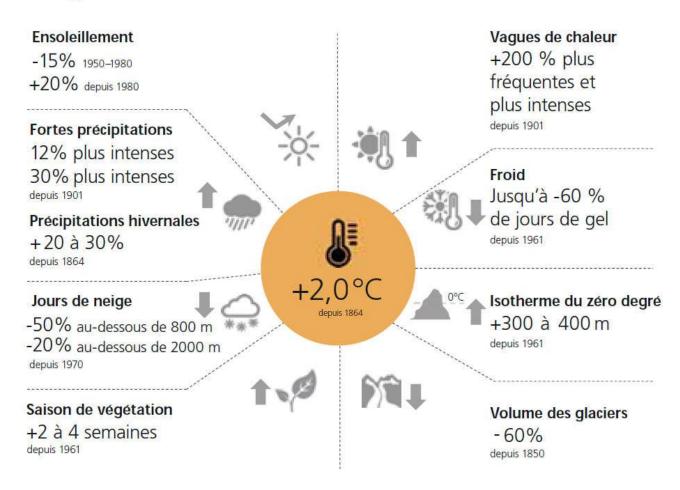
QUELS CHANGEMENTS CLIMATIQUES?

- Collaboration avec MétéoSuisse.
- Le rapport CH2018 donne une idée sur les évolutions des principaux éléments climatiques en Suisse, jusqu'à l'horizon 2085.
- Le rapport CH2018 décrit les évolutions climatiques aux 3 horizons distincts suivants :
 - ➤ Horizon 2035 : « l'avenir proche » : il s'agit de la période 2020 2049 ;
 - ➤ Horizon 2060 : « milieu du siècle » : il s'agit de la période 2045 2074 ;
 - ➤ Horizon 2085 « fin du siècle » : il s'agit de la période 2070 2099.
- De nombreuses données correspondantes à différents scénarios sont par ailleurs déjà disponibles à tous sur le site de la Confédération, via le lien suivant :

Applications - MétéoSuisse

QUELS CHANGEMENTS CLIMATIQUES?

SCÉNARIOS CLIMATIQUES


RCP 8.5 = pessimiste

Hypothèse prise pour le scénario Changement global Scénario Il est considéré qu'aucune mesure d'atténuation Le RCP8.5 changement climatique sera n'est prise concernant la protection du climat. Les important. C'est le scénario le plus émissions ayant un impact sur le climat continuent « pessimiste ». d'augmenter. Les émissions de gaz à effet de serre sont en constante augmentation. En 2100, le forçage radiatif s'élève à 8,5 W/m² par rapport à 1850. RCP4.5 Il est considéré que certaines mesures sont prises Il y a une atténuation limitée du et atténuent les changements climatiques de changement climatique. C'est manière limitée. scénario « moyen ». Les émissions de gaz à effet de serre sont endiquées, mais leur teneur dans l'atmosphère augmente encore pendant 50 ans. L'objectif de 2°C n'est pas atteint. En 2100, le forçage radiatif s'élève à 4,5 W/m² par rapport à 1850. RCP2.6 Le changement devrait être moindre par Avec des mesures significatives de protection du rapport aux deux autres scénarios. C'est climat. Les émissions ayant un impact sur le climat sont réduites de manière significative. le scénario le plus « optimiste ». Une baisse immédiate des émissions entraîne un arrêt de la hausse des gaz à effet de serre dans l'atmosphère d'ici 20 ans environ. Les objectifs de l'Accord de Paris de 2016 sont atteints. En 2100, le forçage radiatif s'élève à 2,6 W/m² par rapport à 1850.

RCP 2.6 = optimiste

QUELS CHANGEMENTS CLIMATIQUES?

Changements observés

Extrait CH2018 – Climate Scenarios for Switzerland – Technical Report [2]

MÉTHODOLOGIE

MÉTHODOLOGIE

PARAMÈTRES MÉTÉOROLOGIQUES :

Paramètre principal	Paramètre secondaire	Brève explication du phénomène	
Température	Température moyenne	Augmentation prévue des températures moyennes de +1 à +3.5°C d'ici 2060.	
	Températures extrêmes	Augmentation des températures extrêmes (maximales et minimales).	
	Fluctuation thermique	Augmentation de la fluctuation thermique :	
		- Différence plus marquée d'un jour à l'autre.	
		- Différence plus marquée entre le jour et la nuit.	
	Périodicité-Durée	Augmentation des épisodes de canicule et de sécheresse, de vague de chaleur, de vague de froid.	
Précipitations	Précipitations moyennes	Changement de régime des précipitations :	
		- Augmentation des précipitations en hiver et au printemps.	
		- Réduction des précipitations en été et en automne.	
	Précipitations extrêmes	Précipitations plus intenses.	
	Orages	Augmentation du nombre et de l'intensité des épisodes orageux.	
	Grêle	Augmentation du nombre et de l'intensité des épisodes de grêles.	
	Neige	Réduction du nombre de jours de neige fraîche.	
		Élévation de la limite des chutes de neige.	
Vent	Vent moyen	Augmentation de la pression du vent.	
	Vent extrême	Augmentation des rafales.	
	Tempêtes, ouragans, rafales	Augmentation du nombre et de l'intensité des épisodes de tempêtes.	

+ autres paramètres (p.ex. végétation) ?

IMPACT SUR LES NORMES

OFFICE CANTONAL DES TRANSPORTS DÉPARTEMENT DE LA SANTÉ ET DES MOBILITÉS

IMPACT DU CHANGEMENT CLIMATIQUE SUR LES NORMES

ÉVALUATION GLOBALE:

Total selon les FK	Nombre de normes	Fortement	Impactée	Non impactée	Justifications
		impactée			
FK 1 : Trafic	29	2	5	22	7 normes à réviser
FK 2 : Etude de projet	117	5	23	89	27 normes à réviser
FK 3 : Matériaux de construction	71	4	9	58	13 normes à réviser
FK 4 : Technique de construction	51	7	5	39	11 normes à réviser
FK 5 : Exploitation	66	0	4	62	3 normes à réviser
FK 6 : Installations des transports publics	14	0	2	12	3 normes à réviser
Total :	348	18	48	282	
_	100%	5%	14%	81%	Environ 19% des normes sont
Pourcentage					impactées par le changement
					climatique

NORME VSS 40 350 ÉVACUATION DES EAUX DE CHAUSSÉES – INTENSITÉ DES PLUIES

EXEMPLE CONCRET – VSS 40 350

INTRODUCTION SUR LA NORME EXISTANTE

But de la norme:

Elle sert à déterminer les intensités des fortes pluies de courte durée (jusqu'à 1 heure) sur le territoire Suisse.

Objet de la norme :

Elle est basée sur une analyse des données à disposition et restitue la réalité en la simplifiant.

<u>Liens avec autres normes : Au moins 6 autres normes avec un lien direct :</u>

- VSS 40 353 « Bases pour la détermination du débit »
- VSS 40 354 « Évacuation des eaux sur l'accotement »
- VSS 40 355 « Drainage »
- VSS 40 356 « Cheminée d'évacuation »
- VSS 40 357 « Débit de dimensionnement des canalisations »
- VSS 40 361 « Installations de traitement »

EXEMPLE CONCRET - VSS 40 350

INTRODUCTION SUR LA NORME EXISTANTE

Formule actuellement appliquée pour calculer les intensités de pluie :

2 Facteurs temporels :

t : durée de pluie : à fixer

T : Temps de retour : se

base sur le passé

Coefficients aT et bT:

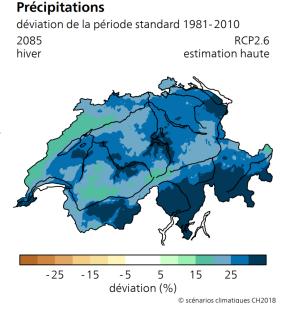
Basés sur des données statistiques récoltées dans les stations météorologiques.

Ils varient en fonction des régions et du temps de retour T choisi (0.5 / 1 / 2 / 5 / 10 / 20 ans)

$$i(t,T) = \frac{a_T}{t + b_T}$$

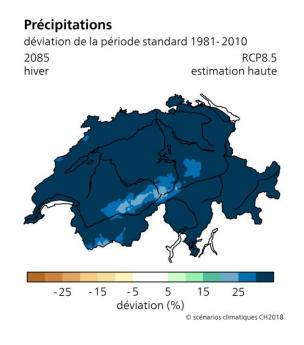
i (t, T) intensité d'une pluie de durée t et un temps période de retour T [mm/h], avec valeur de convertissement l/(s*/ha) : 2,78 = [mm/h]

	110001110111111111111111111111111111111	L · · · · · · · / · · · · · ·				
t	duree de pluie [h]					
Т	temps de retour [années	temps de retour [années]: intervalle dans				
	lequel une certaine intensité de pluie a été					
	en moyenne atteinte ou dépassée au					
	moins une fois					
ат	coefficient (tableau 1)					
bτ	coefficient (tableau 1)					


EXEMPLE CONCRET - VSS 40 350

ÉVOLUTION PRÉVUE CONCERNANT LES PRÉCIPITATIONS (DONNÉES JOURNALIÈRES)

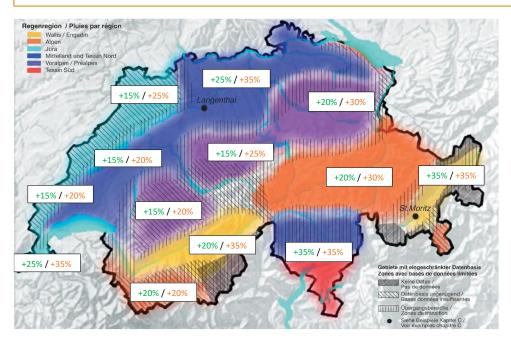
Attention ces données sont valables pour des précipitations journalières uniquement. Les incertitudes sur les valeurs doivent être prises en compte. Il est à noter que les projections pour les précipitations de courte durée ne sont pas encore connues. Les commissions peuvent se rapprocher de la NFK 5.6 pour obtenir des données supplémentaires.


RCP2.6:

Scénario <u>avec des</u>
<u>mesures significatives de</u>
<u>protection du climat</u>
(changement climatique
de moindre ampleur)

RCP8.5:

Scénario <u>sans aucune</u>
<u>mesure de protection du</u>
<u>climat</u>
(changement climatique le plus extrême)



EXEMPLE CONCRET – VSS 40 350

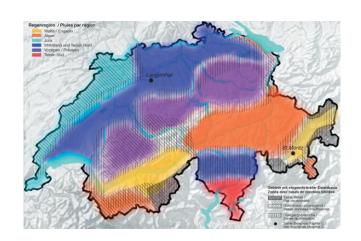
ÉVOLUTION PRÉVUE CONCERNANT LES PRÉCIPITATIONS (DONNÉES JOURNALIÈRES)

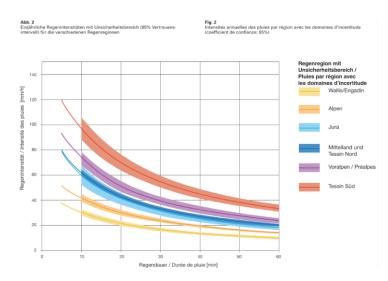
Attention ces données sont valables pour des précipitations journalières uniquement. Les augmentations sont purement indicatives en prenant uniquement en compte l'évolution des précipitations journalières. Ceci est un exemple d'application.

Les incertitudes sur les valeurs doivent être prises en compte.

Horizon 2060 (RCP2.6/RCP8.5)

Horizon 2085 (RCP2.6/RCP8.5)


EXEMPLE CONCRET – VSS 40 350


IMPACTS SUR LA NORME

Toute la norme est impactée puisqu'elle se base sur des <u>données passées</u> (temps de retour et coefficients aT et bT, carte)

$$i(t,T) = \frac{a_T}{t + b_T}$$

Wiederkehrperiode		T= 0,5		T= 1		T= 2	
Période de retour							
Region	Koeffizient	Norm	Unsicherheitsbereich	Norm	Unsicherheitsbereich	Norm	Unsicherheitsbereich
Région		Norme	Domaine d'incertitude	Norme	Domaine d'incertitude	Norme	Domaine d'incertitude
Engadin / Wallis	a _T	11,00	0,8	12,38	1,2	14,02	1,7
	b _T	0,335	-0,02	0,248	0,01	0,204	0,02
Alpen	a _T	14,64	0,8	17,80	0,1	21,11	0,0
	b _T	0,316	-0,03	0,263	-0,03	0,236	-0,03
Jura	a _T	17,14	1,5	21,49	1,7	25,92	2,0
	b _T	0,200	-0,01	0,193	-0,02	0,191	-0,03
Mittelland	a _T	17,01	1,1	23,61	1,1	30,23	1,3
Tessin Nord	b _T	0,200	0,00	0,219	0,00	0,231	0,00
Voralpen /	a _T	20,22	1,8	28,60	3,1	37,02	4,7
Préalpes	b _T	0,198	0,00	0,224	0,02	0,241	0,02
Tessin Süd	a _T	34,41	1,3	41,91	3,4	49,54	4,8
	b _T	0,272	-0,02	0,268	-0.01	0,267	-0,02

NORME VSS 40 350 ÉVACUATION DES EAUX DE CHAUSSÉES – INTENSITÉ DES PLUIES

PISTE À ÉTUDIER ...

- Mise à jour de la norme avec les données disponibles les plus récentes
- Mise en place d'un facteur correctif dans la formule de Talbot qui prendrait en compte le changement climatique
- Développement d'une nouvelle formule en se basant sur les estimations futures (= changement total de paradigme);
- Découpage de la carte des régions à réviser
- Prendre des marges supplémentaires «vers le haut» pour les intervalles de confiance / incertitudes.

CONCLUSIONS

CONCLUSIONS

- > Maintenir les infrastructures routières
- ➤ Les adapter yc. l'entretien
- ➤ Maintenir la sécurité des usagers
- Coût de l'inaction élevé

Garantir la pérennité de nos infrastructures

MERCI POUR VOTRE ÉCOUTE

CONTACT:

ALEXANDRA.DUFOUR@ETAT.GE.CH

