

Le béton déchainé - Une nouvelle approche de conception performancielle

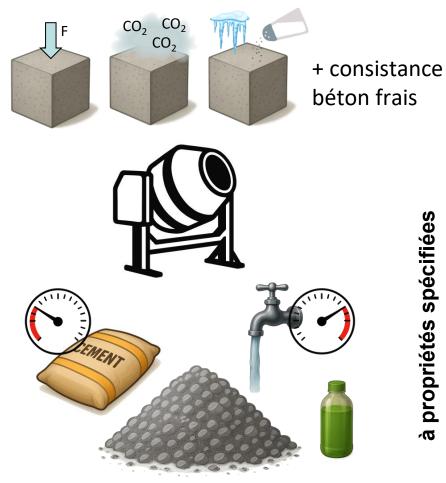
Dr. Pascal Kronenberg

TFB – Technologie et recherche pour le béton 1070 Puidoux

Contenu

- Enjeu et motivation
- Spécification selon norme béton SN EN 206
- Nouvelle annexe nationale ND de la SN EN 206
- Défis et opportunités
- Technologie du béton, formulation de sortes ND
- Quels bétons?
- Certification
- Exemple d'application
- Conclusion

Enjeu, motivation


- L'approche descriptive de conception de bétons de la norme béton SN EN 206 n'est plus adapté aux défis actuels de réduction d'empreinte carbone
- Réduire les effets indirects non souhaités des performances de durabilité du béton sur les performances mécaniques (excès de résistance)
- But: Offrir aux producteurs plus de possibilités pour innover en matière de formulation des bétons afin de mieux répondre aux exigences du développement durable et de performance technique des bétons

Nouvelle approche 100% performancielle, sans limites de dosage en ciment ni de rapport E/C

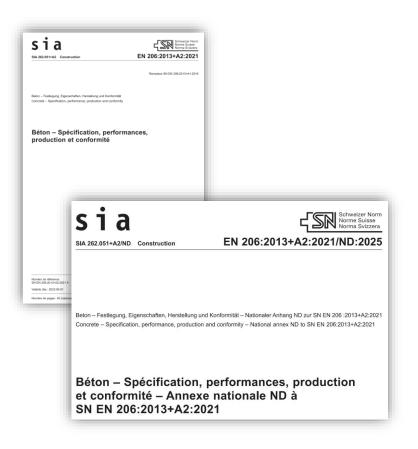
Spécification des bétons selon la SN EN 206

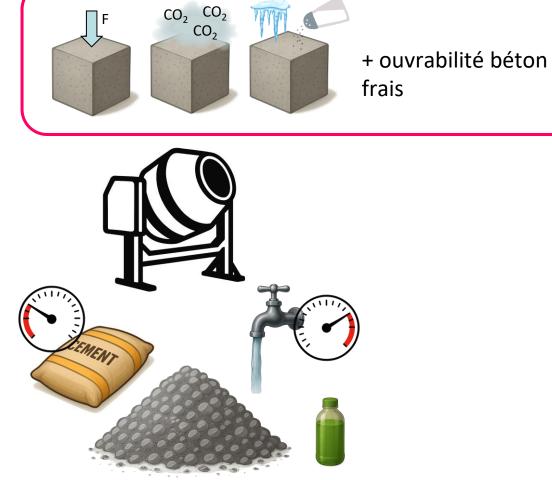
Spécification (performances, classes): Ing/MO

Formulation recette: Producteur

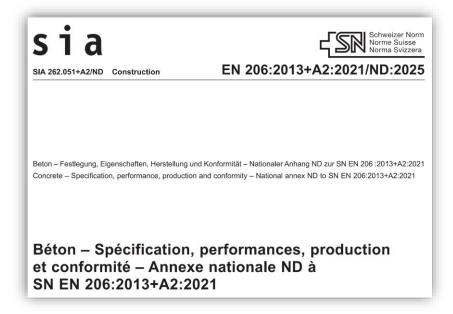
composition prescrite

à propriétés spécifiées




Formulation recette: Ing/MO

Gâchage selon recette: Producteur


Nouvelle approche performancielle

SN EN 206+A2:2021 - Nouvelle annexe nationale ND

 Règles suisses pour une méthode performancielle conformément au concept de performance équivalente du béton (CPEB) de la EN 206 (chiff. 5.2.5.3)

Principales nouveautés

- Abolition des valeurs limites normatives pour le dosage en ciment et le rapport E/C
- Rapport E/C -> E/L (L = liant)
- Concept coefficient k aboli (k = 1)
- Concept des familles de béton aboli
- Possibilité de spécifier une limite sup. de résistance à la compression du béton
- Les ciments autorisés (registre SIA) n'ont plus de restrictions d'utilisation

Tableau NA.6 Exigences à la composition et aux essais des sortes de béton fréquemment utilisées (grain maximal du granulat de 8 mm à 63 mm)

Sorte Exigences	Sorte 0 («zéro»)	Sorte A	Sorte B	Sorte C	Sorte D (T1)	Sorte E (T2)	Sorte F (T3)	Sorte G (T4)
Classe d'exposition (combinaison des classes indiquées)	X0(CH)	XC2(CH)	XC3(CH)	XC4(CH), XF1(CH)	XC4(CH), XD1(CH), XF2(CH)	XC4(CH), XD1(CH), XF4(CH)	XC4(CH), XD3(CH), XF2(CH)	XC4(CH), XD3(CH), XF4(CH)
Rapport <i>e/c</i> resp. rapport <i>e/c_{eq}</i> maximal	-	0,65	0,60	0,50	0,50	0,50	0,45	0,45
Dosage min. en ciment c_{min} , en kg/m ^{3 1),2)}	-	280	280	300	300	300	320	320
Essais de durabilité 3)	néant	néant	PE ⁴⁾ , RCarb	RCarb	RCarb, GDS	RCarb, GDS	RCI, GDS	RCI, GDS
Autres exigences	SN EN 12620+A1:2008 contient les exigences relatives aux granulats							
Ciments admis (tableau NA.1)	En cas de combinaison des classes d'exposition, le choix du ciment se fait en fonction de l'exigence la plus sévère							

Le dosage minimal en ciment est valable pour des bétons sans additions et pour D_{max} 32 mm. Pour d'autres D_{max} , adapter le dosage minimal en ciment selon tableau NA.7.

latives à la composition des sortes de béton utilisées pour pieux forés et parois moulées aximale du granulat D_{\max} de 16 mm à 32 mm)

	P1 au sec	P2 sous l'eau	P3 au sec	P4 sous l'eau
e/c _{eq} maximal	0,50	0,50	0,60	0,60
,, en kg/m³ ¹)	330	380	330	380
	selon SN EN 12620+A1:2008			

Valeur de référence pour la teneur en farine du béton, en kg/m³ 2)	≥ 400			
Types de ciment autorisés	selon tableau NA.1 pour les sortes de béton D et E ³⁾	selon tableau NA.1 pour les sortes de béton C à G		

¹⁾ Le dosage minimal en ciment est valable pour des bétons sans additions et pour D_{max} de 16 mm à 32 mm. Pour un D_{max} autre qu'entre 16 mm et 32 mm, adapter le dosage minimal en ciment.

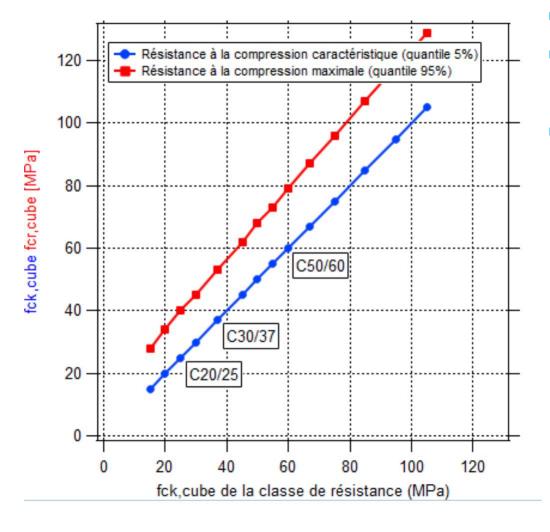
²⁾ Pour le ciment de type CEM II/B-LL la note de bas de page du tableau NA.1 est à consulter.

Essais selon la norme SIA 262/1:2019, annexes A, B, C et I pour la perméabilité à l'eau (PE), la résistance aux chlorures (RCI), la résistance au gel/dégel en présence de sels de déverglaçage (GDS) et la résistance à la carbonatation (RCarb). Les valeurs limites et critères de conformité figurent au chiffre NA.8.2.3.4 (tableau NA.14).

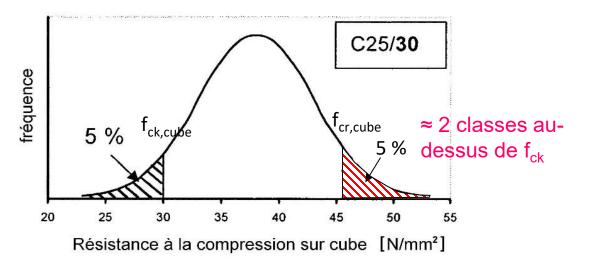
⁴⁾ La perméabilité à l'eau (PE) est à déterminer lorsque cette preuve est demandée selon chiffre NA.8.2.3.5.

Pour un D_{max} autre qu'entre 16 mm et 32 mm, adapter la valeur de référence de la teneur en farine (cf. chiffre 3.1.2.9 de EN 206).

³⁾ S'il est assure que le béton n'est pas exposé à une attaque par le gel/dégel sans ou avec sels de déverglaçage, on peut aussi utiliser les ciments autorises pour l'utilisation dans des bétons de sorte C selon tableau NA.1.



Spécification de bétons selon annexe ND


- Font partie des bétons à propriétés spécifiées
- Un béton selon ND appartient à une sorte de béton (p.ex. sorte A)
 Désignation ex.: sorte A-ND selon SN EN 206
- Des variantes sont possibles : p.ex. Sorte G-ND sans risque de carbonatation (C30/37, XC4, XD3, XF4) -> à définir spécifiquement au projet
- Les bétons ND doivent être clairement désignés comme tels (bon de livraison, prix courant centrale)
- Les bétons ND sont toujours admis, sauf si explicitement exclus par l'auteur de projet
- ND pas admis pour des classes d'exposition à une attaque chimique (XA)
- Possibilité de limiter la résistance à la compression <u>vers le haut</u> (à combiner avec une baisse de la classe de résistance)

Définition de valeurs f_c max. représentatives

- Optionnel, spécifique au projet
- $f_{cr} = 1.33 f_{cm}$ (cylindre) avec $f_{cm} = f_{ck} + 8 MPa$
- Mais: dans certains cas, risque d'incompatibilité avec les exigences de durabilité (sortes F et G)

Défis et opportunités

Maitre d'ouvrage

Amélioration du bilan carbone du projet de construction

- PAQ béton ciblé à l'ouvrage et au béton ND
- Coûts du contrôle du MO

Spécificateur (ingénieur)

- Moins d'excès de résistance -> réduction risque de fissuration / ouverture des fissures
- Pas besoin de majorer le taux d'armature minimale

- Spécification plus nuancée des sortes de béton, en fonction des besoins effectifs des éléments d'ouvrage
- Vérifier la disponibilité locale des bétons répondant à la spécification
- Prévoir assez de temps pour développer et tester des nouvelles recettes, le cas échéant
- Ne pas spécifier l'impossible...

Défis et opportunités

Entreprise de construction

- Bétons potentiellement plus délicats à mettre en place
- Rajouts d'eau sur le chantier strictement <u>interdits</u>

- Avantage économique potentiel...
- Défi et opportunité de marketing

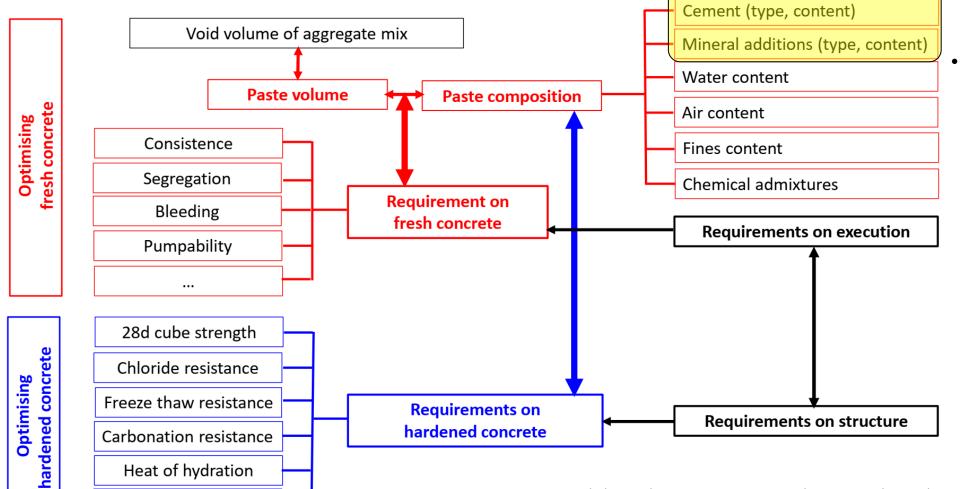
Centrale à béton / laboratoire

- Manque d'expérience
- Nouveaux essais initiaux
- Bétons conformes et robustes
- Temps / coûts de développement

- Potentiel d'innovation et d'optimisation
- Défi et opportunité de marketing (EPD)
- Réduction des coûts du liant

Technologie du béton

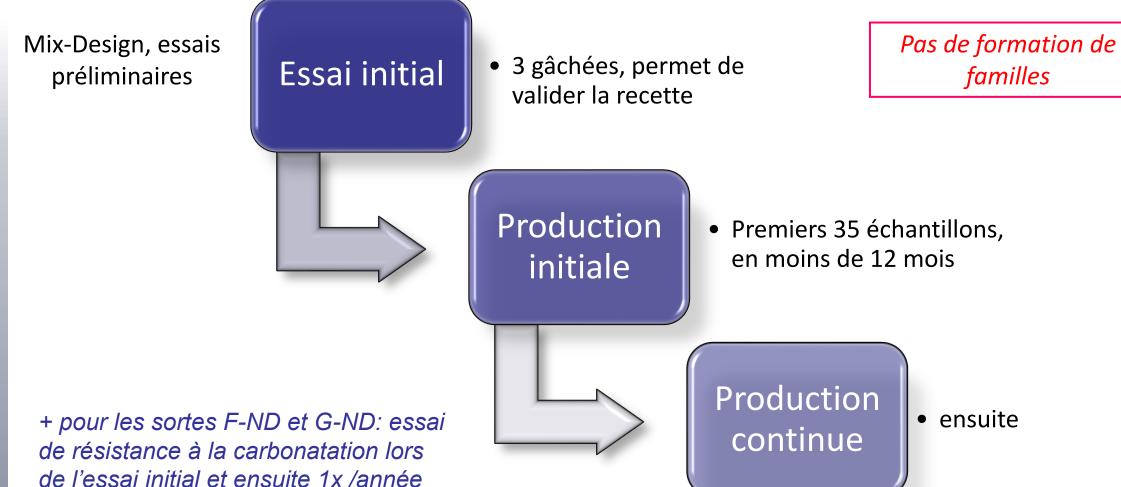
Défis


- Béton frais:
 - Ouvrabilité / pompabilité
 - Résistance au ressuage et à la ségrégation
 - Tassement du béton frais
- Béton durci
 - Montée en résistance à la compression (délai de décoffrage)
 - Durabilité (résistance à la carbonatation, résistance aux chlorures, résistance au gel/dégel)
 - Fissuration due au retrait
 - Alcalinité suffisante pour garantir une protection contre la corrosion de l'armature

Formulation – nouvelles recettes

Alternative: liants prêts à l'emploi

- ciments Portland composés fortement réduits en clinker, K < 65% (CEM II/C-M)
- «nouveaux» ciments suisses avec empreinte carbone réduite (ZN/D; CRxx et CNxx)


Hunkeler et al., A new concrete mix-design – A pilot application for a road bridge parapet Fib congress 2022, Oslo

Journée JERI 2025

04.11.2025

Procédure de conception et de production d'un nouveau béton

Laboratoire béton

- L'approche performancielle requiert de réapprendre à formuler des bétons
- Nécessite une rigueur en matière de technologie du béton et un effort de contrôle renforcé
- Les essais sur béton frais (consistance, teneur en eau) deviennent encore plus importants, car ce sont des paramètres de contrôle et de réglage immédiats lors du bétonnage
 - -> Permettent d'ajuster l'adjuvantation si nécessaire
- L'accompagnement par un laboratoire accrédité STS et spécialisé en technologie du béton est vivement conseillé

Quels bétons en priorité?

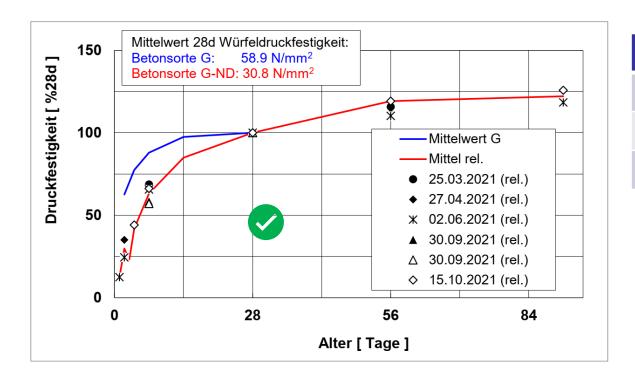
- Bétons de bâtiment (sortes A, B, C)
- Bétons de génie civil, avec résistance à la compression modérée et exigences élevées à la fissuration (parapet, bordures de pont, murs de soutènement, cuves blanches, etc.)
- Bétons de masse (grands volumes, épaisseur > 80 cm)
- Bétons pour pieux / parois moulées sous l'eau (sortes P2 et P4)

Certification selon SN EN 206

- La certification du système de contrôle de la production d'une centrale est un élément essentiel pour assurer une qualité conforme des bétons produits
- Particulièrement importante pour les bétons ND, car moins de marge de sécurité due à l'absence des garde-fous de composition $(C_{min}, E/C_{max})$
- Obligatoire en Suisse pour tous les bétons selon SN EN 206
- Il appartient au MO/ingénieur de s'assurer avant le démarrage du chantier que la centrale est bien certifiée SN EN 206
- Organismes d'inspection et certification en Suisse: S-Cert et ASMP
- Registres en-ligne des centrales certifiées: www.s-cert.ch et www.sugb.ch

Projet pilote: Remise en état parapet pont de la gare, Tüscherz

Extrait du rapport OFROU 82024 "Neues Entwurfsverfahren für Beton – Pilotanwendung bei der Bahnhofbrücke Tüscherz"


Sorte G-ND: C20/25, XC4, XD3, XF4, Dmax32, Cl 0.10, F4, fc < 38 MPa

Constituant	Sorte G-ND (aval)	Sorte G (amont)
Ciment	250 kg/m3 CEM III/B	330 kg/m3 CEM II/B-M(S-LL)
Filler calcaire	25 kg/m3	0 kg/m3
E/C	0.60	0.44
E/L	0.55	-

Résultats d'essai

Prop. durabilité béton	Résultats essais G-ND
Résist. carbo.	9.0 mm/a ^{0.5}
Résist. chlorures	$3.6 \cdot 10^{-12} \text{ m}^2/\text{s}$
Réssit. GDS	3 x élevée, 1 x moyenne

Prop. béton frais	Résultats d'essai G-ND
Etalement	350 à 560 mm
Teneur en air	2.4 à 7.2 %-vol.
Temp. béton	14 à 22 °C
Masse vol.	2220 à 2490 kg/m3
E/C	0.53 à 0.63

Fissuration de retrait

Parapet amont (sorte G), w ≈ 0.3 mm

Parapet aval (sorte G-ND), $w \approx 0.1 \text{ mm}$

Conclusion

- L'approche performancielle ouvre une nouvelle voie innovante pour réduire l'empreinte carbone des bétons et éviter des résistances et modules élastiques excessives
- Défi en matière de technologie du béton pour la centrale et le laboratoire
- Nous devons réapprendre à formuler des recettes de béton efficaces et efficientes
- MAIS: Les efforts de réduction d'empreinte carbone du béton ne doivent pas péjorer la durabilité des ouvrages
- Actuellement encore peu de recul, à voir d'ici 1 à 2 ans si les sortes ND trouvent leur part de marché