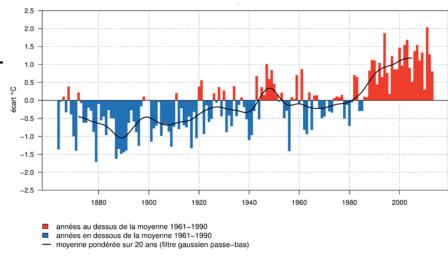


Dr. RYCHEN Patrick

25.11.2014

Contenu de la présentation


- Introduction
- Prévision des conditions météorologiques estivales
- L'orniérage et le changement climatique
- Conclusions

JER

Introduction

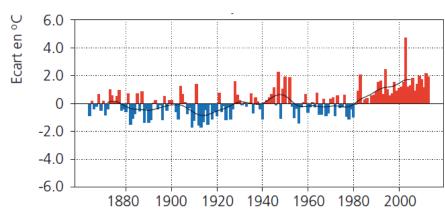
• Le changement climatique :

- Phénomène reconnu par une large majorité de la communauté scientifique
- Se concrétise par une modification des conditions météorologiques moyennes et extrêmes
- Probables impacts sur la durée de vie des revêtements routiers

[MétéoSuisse, 2014]

 Phénomène actuellement non considéré dans le dimensionnement des chaussées routières

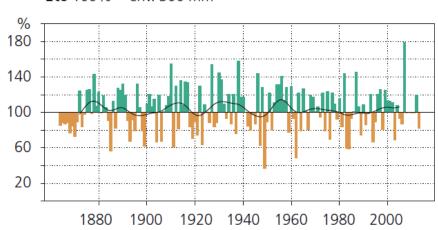
climatique


J E R

Introduction

• Le changement climatique et les conditions estivales :

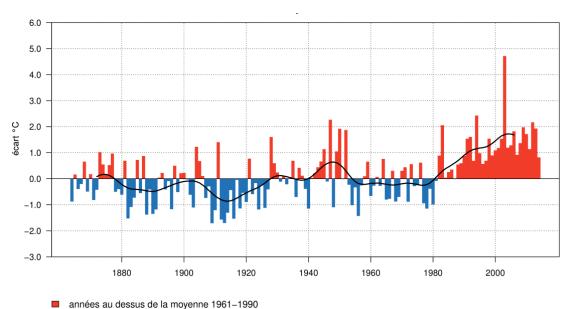
Températures


Eté (juin, juillet, août) 1864-2013

Précipitations

Eté 100% = env. 300 mm

[MétéoSuisse, 2014]


climatique

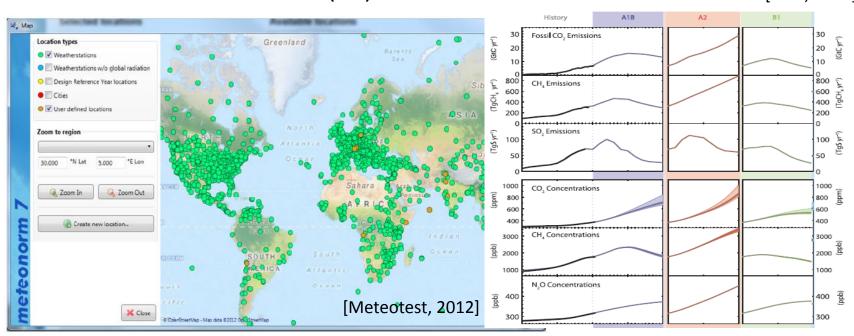
Introduction

• Eté 2014 – Un été «pourri» ?

années en dessous de la moyenne 1961-1990

Températures

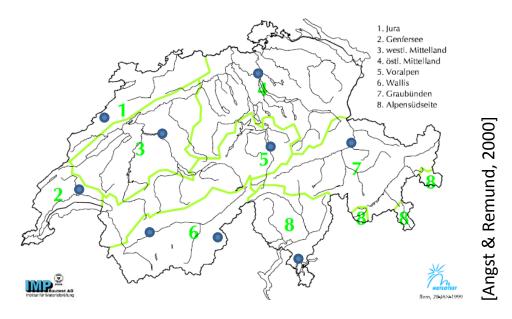
moyenne pondérée sur 20 ans (filtre gaussien passe-bas)


[MétéoSuisse, 2014]

Prévision des conditions météorologiques estivales

- Modèle climatique de pronostic Meteonorm 7.0
 - Basé sur agrégation de 18 modèles généraux de circulation
 - Méthode stochastique pour génération des conditions climatiques régionales
 - Modélisation de trois scenarios climatiques (IPCC) :
 - Scénario modéré (B1)
 - Scénario extrême (A2)

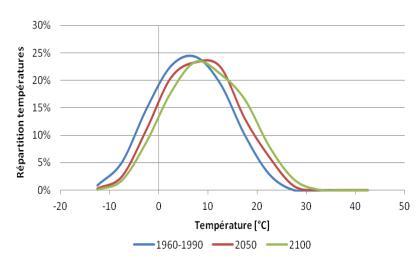
Scénario moyen (A1B)


[IPCC, 2007]

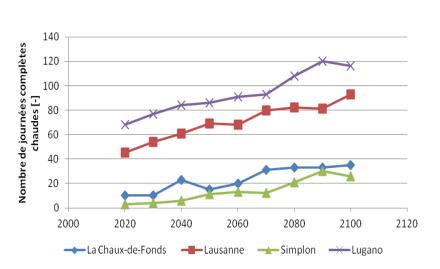
Л E R E

Prévision des conditions météorologiques estivales

- Hypothèses et paramètres d'analyse :
 - Neuf sites géographiques suisses

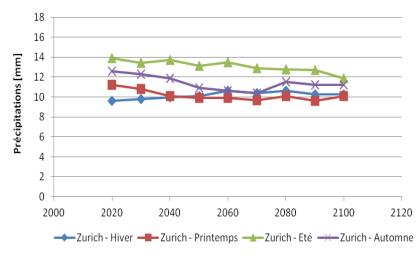

- Quatre périodes d'analyse :
 - Référence (1960-1990)
 - Moyen-terme (2050-2070)
- Court-terme (2020-2040)
- Long-terme (2080-2100)

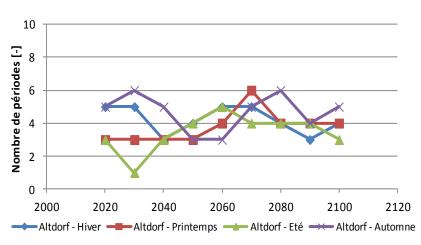
climatique


Prévision des conditions météorologiques estivales

• Changements des températures :

- Décalage et étalement des courbes de répartition des températures
- Augmentation des périodes chaudes, diminution des périodes froides

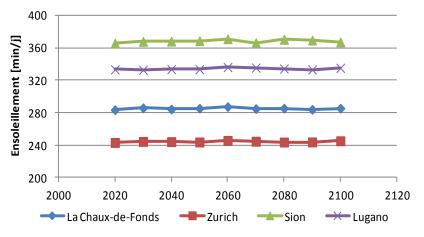

(La Chaux-de-Fonds, scénario A1B)


(Température > 15°C, scénario A1B)

Prévision des conditions météorologiques estivales

- Changements des précipitations :
 - Diminution des précipitations estivales
 - Légère augmentation des périodes sèches

(Précipitations max saisonnières, scénario A1B)



(Périodes sèches de 5 jours, scénario A1B)

climatique

Prévision des conditions météorologiques estivales

- Changements de l'ensoleillement :
 - Aucune tendance nette de changements des intensités

(Ensoleillement max journalier, scénario A1B)

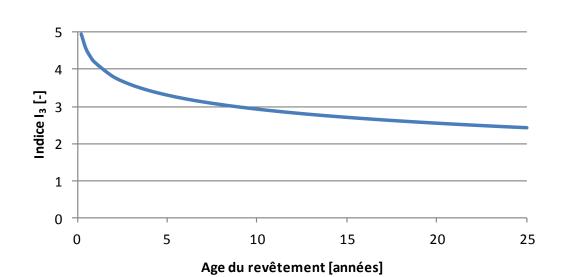
- Changements des autres conditions :
 - Aucune tendance nette de changements des intensités (vent, humidité)

- Deux phénomènes d'orniérage :
 - Fluage de l'enrobé dans les couches supérieures
 - → phénomène accentué par des températures élevées et un fort ensoleillement
 - Déformation verticale des couches de fondation et/ou du sol
 - → phénomène qui peut être accentué par des cycles de gel-dégel répétés ou l'action des précipitations lorsque la chaussée est fissurée

climatique

Orniérage et changement climatique

 Loi d'évolution de l'indice d'état de planéité transversale I₃ [Zuffrey et al., OFROU n°196, 1990] :

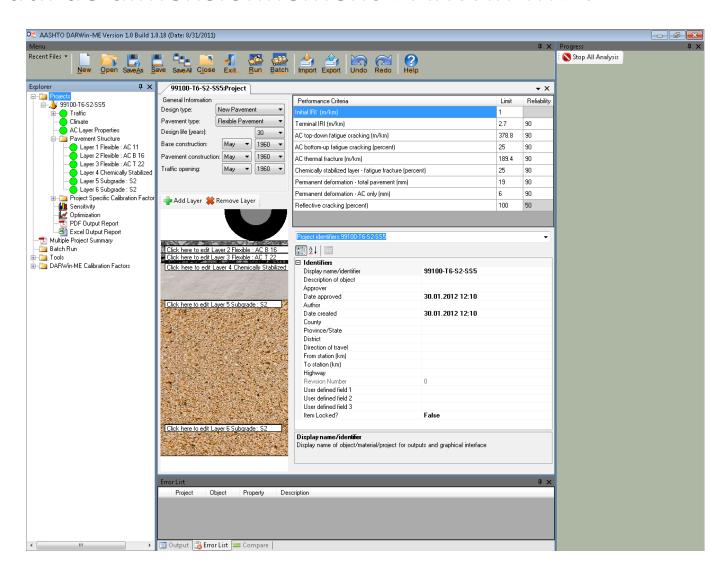

$$I_3 = 4.2 - 0.55 \cdot \ln age$$

Avec : I₃ Indice d'état de planéité transversale

age Age du revêtement

[années]

[-]


- Dimensionnement mécanistique-empirique des revêtements :
 - Choix de la méthode américaine M-E PDG (mechanisticempirical pavement design guide) :
 - > Approche mécanistique-empirique et incrémentale
 - ➤ Intégration des conditions météorologiques dans le dimensionnement
 - S'intéresse à la structure routière complète (fondation, plateforme, couches bitumineuses, etc.)
 - ➤ Intègre plusieurs modèles de performance
 - ➤ Outil de dimensionnement DARWin-ME

climatique

JER

Orniérage et changement climatique

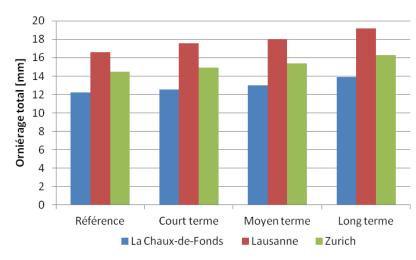
Outil de dimensionnement DARWin-ME :

- Hypothèses et paramètres d'analyse :
 - Paramètres généraux :
 - Quatre horizons d'analyse (1960 ; 2020 ; 2050 ; 2080)
 - Paramètres météorologiques :
 - ➤ Paramètres météorologiques issus du modèle climatique de pronostic Meteonorm 7.0
 - ➤ Neuf sites géographiques
 - > Trois scenarios climatiques proposés par l'IPCC
 - Paramètres de trafic
 - ➤ Quatre régimes de trafic (classes de trafic T3 à T6) avec données statistiques et données issues des normes suisses

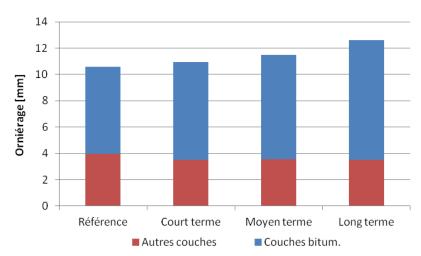
JERI

- Hypothèses et paramètres d'analyse :
 - Paramètres structurels
 - > Trois classes de sols de fondation (classe de portance S2 à S4) avec données issues des normes suisses
 - ➤ Trois types de superstructure avec caractéristiques selon catalogue des superstructures de la norme SN 640 324
 - Types d'enrobés employés couramment en Suisse avec caractéristiques selon norme SN 640 430
 - Paramètres des matériaux
 - Caractéristiques standards pour les matériaux granulaires, traités aux liants hydrauliques et bitumineux selon normes suisses (SN 640 431-1b et SN 640 430, SN 670 202, SN 670 119, SN 670 010b, etc.)

climatique


Orniérage et changement climatique

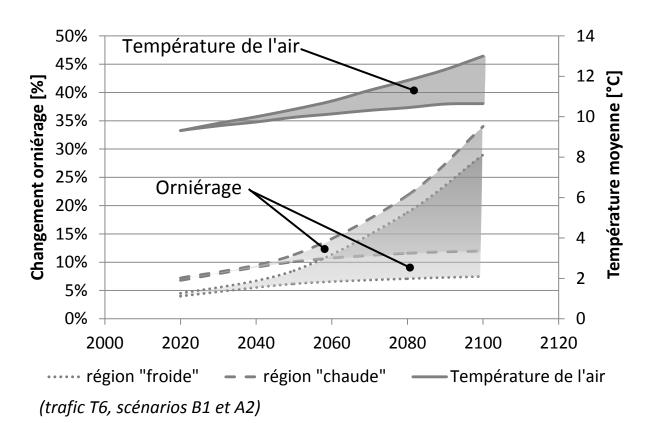
Types de couches bitumineuses :


_							
	Classe de trafic	Superstructure 1		Superstructure 2		Superstructure 5	
•	Т6		40 mm AC 11 90 mm AC B 22 140 mm AC T 32 150 – 400 mm Grave		40 mm AC 11 140 mm AC T 32 110 – 140 mm AC F 32 0 – 300 mm Grave		40 mm AC 11 60 mm AC B 16 80 mm AC T 22 160 – 300 mm Stabilisation aux liants hydraul.
	T5		40 mm AC 11 70 mm AC B 22 110 mm AC T 32 150 – 400 mm Grave		50 mm AC 11 100 mm AC T 22 90 – 110 mm AC F 22 0 – 300 mm Grave		40 mm AC 11 50 mm AC B 16 60 mm AC T 22 160 – 300 mm Stabilisation aux liants hydraul.
	Т4		40 mm AC 11 50 mm AC B 16 80 mm AC T 22 150 – 400 mm Grave		40 mm AC 11 80 mm AC T 22 70 – 90 mm AC F 22 0 – 300 mm Grave		40 mm AC 11 80 mm AC T 22 160 – 240 mm Stabilisation aux liants hydraul.
	Т3		40 mm AC 11 90 mm AC T 22 150 – 350 mm Grave		40 mm AC 11 60 mm AC T 16 70 mm AC F 22 0 – 250 mm Grave		40 mm AC 11 60 mm AC T 16 160 – 200 mm Stabilisation aux liants hydraul.

climatique

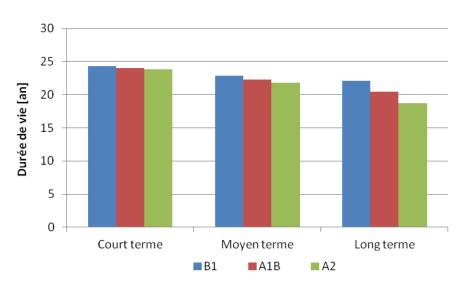
- Impact sur l'orniérage :
 - Augmentation de l'orniérage
 - Orniérage des couches bitumineuses

(trafic T5, sol S2, superstructure 1, scénario A2)



(Lausanne, trafic T5, sol S3, superstructure 5, scénario A2)

climatique


Orniérage et changement climatique

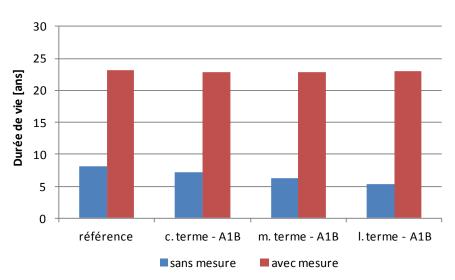
Impact sur l'orniérage :

climatique

- Impact sur les durées de vie :
 - Cas critiques : sites géographiques à températures élevées ; classes de trafic T5 et T6
 - Différences entre les scénarios climatiques à moyen et long-terme

(Zurich, trafic T6, sol S4, superstructure 2)

climatique


Orniérage et changement climatique

• Analyse de risque :

		Horizon d'analyse		
		Court-	Moyen-	Long-
		terme	terme	terme
an a	Région "froide" : Jura, Alpes (altitude élevée)	Très faible	Très faible	Très faible
Région climatique	Région "intermédiaire" : Plateau, Préalpes, Alpes (altitude faible)	Faible	Moyen	Elevé
<u></u>	Région "chaude" : Bassin Lémanique, Sud des Alpes	Très élevé	Très élevé	Très élevé

climatique

- Mesures d'adaptation :
 - Proposition et évaluation de différentes mesures d'adaptation :
 - > Changement des paramètres structurels
 - Changement des paramètres des matériaux
 - Par exemple utilisation de matériaux à haute performance (AC EME, SDA-AC MR)

(Région «chaude", trafic T6, sol S2, superstructure 1)

Conclusions

Il faut s'attendre à :

- des changements conséquents des conditions météorologiques futures
- une diminution des performances critiques (orniérage, fissuration par fatigue, etc.) et donc une diminution des durées de vie
- une augmentation du risque, plus particulièrement sur certaines régions climatiques
- devoir prendre des mesures d'adaptations pratiques efficaces pour lutter contre le phénomène de changement climatique

Conclusions

- L'impact du changement climatique est non négligeable et doit être intégré dans la normalisation future
- Des mesures d'adaptation recourant à des technologies et techniques existantes et reconnues semblent suffisantes pour lutter efficacement contre le phénomène
 - → Résultats intégrés dans projet de recherche REDIRE (Révision des méthodes de dimensionnement et renforcement des chaussées)

Fin...

Merci de votre attention!

RΙ